Close correspondence between the action spectra for the blue light responses of the guard cell and coleoptile chloroplasts, and the spectra for blue light-dependent stomatal opening and coleoptile phototropism.
نویسندگان
چکیده
Fluorescence spectroscopy was used to characterize blue light responses from chloroplasts of adaxial guard cells from Pima cotton (Gossypium barbadense) and coleoptile tips from corn (Zea mays). The chloroplast response to blue light was quantified by measurements of the blue light-induced enhancement of a red light-stimulated quenching of chlorophyll a fluorescence. In adaxial (upper) guard cells, low fluence rates of blue light applied under saturating fluence rates of red light enhanced the red light-stimulated fluorescence quenching by up to 50%. In contrast, added blue light did not alter the red light-stimulated quenching from abaxial (lower) guard cells. This response pattern paralleled the blue light sensitivity of stomatal opening in the two leaf surfaces. An action spectrum for the blue light-induced enhancement of the red light-stimulated quenching showed a major peak at 450 nm and two minor peaks at 420 and 470 nm. This spectrum matched closely an action spectrum for blue light-stimulated stomatal opening. Coleoptile chloroplasts also showed an enhancement by blue light of red light-stimulated quenching. The action spectrum of this response, showing a major peak at 450 nm, a minor peak at 470 nm, and a shoulder at 430 nm, closely matched an action spectrum for blue light-stimulated coleoptile phototropism. Both action spectra match the absorption spectrum of zeaxanthin, a chloroplastic carotenoid recently implicated in blue light photoreception of both guard cells and coleoptiles. The remarkable similarity between the action spectra for the blue light responses of guard cells and coleoptile chloroplasts and the spectra for blue light-stimulated stomatal opening and phototropism, coupled to the recently reported evidence on a role of zeaxanthin in blue light photoreception, indicates that the guard cell and coleoptile chloroplasts specialize in sensory transduction.
منابع مشابه
Blue Light Regulation of Stomatal Opening and the Plasma Membrane H+-ATPase.
Light-induced stomatal responses were first reported by Darwin (1989). Stomata open in response to light, including blue and red light (Shimazaki et al., 2007). Red light induces stomatal opening via photosynthesis in the mesophyll and guard cell chloroplasts (Mott et al., 2008; Suetsugu et al., 2014). In contrast, blue light as a signal induces stomatal opening. Phototropins expressed in guard...
متن کاملFluorescence Properties of Guard Cell Chloroplasts: EVIDENCE FOR LINEAR ELECTRON TRANSPORT AND LIGHT-HARVESTING PIGMENTS OF PHOTOSYSTEMS I AND II.
The presence of chloroplasts in guard cells from leaf epidermis, coleoptile, flowers, and albino portions of variegated leaves was established by incident fluorescence microscopy, thus confirming the notion that guard cell chloroplasts are remarkably conserved. Room temperature emission spectra from a few chloroplasts in a single guard cell of Vicia faba showed one major peak at around 683 nano...
متن کاملGuard Cell Chloroplasts Are Essential for Blue Light-Dependent Stomatal Opening in Arabidopsis
Blue light (BL) induces stomatal opening through the activation of H+-ATPases with subsequent ion accumulation in guard cells. In most plant species, red light (RL) enhances BL-dependent stomatal opening. This RL effect is attributable to the chloroplasts of guard cell, the only cells in the epidermis possessing this organelle. To clarify the role of chloroplasts in stomatal regulation, we inve...
متن کاملSlow photosynthetic induction and low photosynthesis in Paphiopedilum armeniacum are related to its lack of guard cell chloroplast and peculiar stomatal anatomy.
Paphiopedilum and Cypripedium are close relatives in the subfamily Cypripedioideae. Cypripedium leaves contain guard cell chloroplasts, whereas Paphiopedilum do not. It is unclear whether the lack of guard cell chloroplasts affects photosynthetic induction, which is important for understory plants to utilize sunflecks. To understand the role of guard cell chloroplasts in photosynthetic inductio...
متن کاملPhytochrome and blue light-mediated stomatal opening in the orchid, paphiopedilum.
Guard cells of the orchid genus, Paphiopedilum have been reported to lack developed chloroplasts and detectable chlorophyll a autofluorescence. Paphiopedilum stomata lack a photosynthesis-dependent opening response but have a blue light-specific opening. The present study found that low fluence rate green and red light elicited stomatal opening in Paphiopedilum and this opening was reversed by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 93 5 شماره
صفحات -
تاریخ انتشار 1996